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Research

Physical inactivity is associated with increased 
risk of several adverse health outcomes includ-
ing heart disease, type 2 diabetes, colon can-
cer, breast cancer, and mortality (Colditz et al. 
1997; Kelley and Goodpaster 2001; Kohl 
2001; Verloop et al. 2000). Active commut-
ing, such as walking or biking to work on a 
daily basis, has been shown to decrease risk 
of all-cause mortality and cardiovascular dis-
ease (Andersen et al. 2000; Hamer and Chida 
2008; Zheng et al. 2009). Various attributes 
of the built environment (e.g., population 
density, street connectivity, land use mix) have 
been associated with rates of physical activity 
at the neighborhood level (Ewing et al. 2003; 
Frank et al. 2005; Saelens et al. 2003a; Sallis 
et al. 2009). Furthermore, the type of trans-
portation mode used (public transit vs. car) 
affects personal energy expenditure (Morabia 
et al. 2010). Thus, an important research ques-
tion is whether urban planning can reduce 
physical inactivity and improve health.

Exposure to outdoor urban air pollution 
is associated with various adverse health out-
comes including heart disease, respiratory 
disease, lung cancer, asthma, and mortality 

(Brunekreef and Holgate 2002; Gent et al. 
2003; Pope and Dockery 2006; Pope et al. 
2002). Chronic exposures vary at similar mag-
nitudes within-cities as between-cities (Jerrett 
et al. 2005; Miller et al. 2007), suggesting 
that neighborhood location, urban design, 
and proximity to roads can affect exposures 
(Health Effects Institute 2009; Marshall 
et al. 2005).

Recently, the World Health Organization 
(WHO) cited physical inactivity (4th) and 
exposure to outdoor urban air pollution 
(14th) among the top 15 risk factors for the 
Global Burden of Disease (WHO 2009); 
for high-income countries, these ranks are 
4th (physical inactivity) and 8th (outdoor 
air pollution). Urban planning and the built 
environment may differentially influence 
exposures to those two risk factors (Marshall 
et al. 2009). A small number of studies have 
investigated the effects of exercise while con-
trolling for air pollution exposure (de Nazelle 
et al. 2009; Wong et al. 2007) or explored 
regional- or national-scale theoretical shifts to 
active travel (de Hartog et al. 2010; Grabow 
et al. 2011); however, accounting for health 

outcomes from exposure to air pollution and 
physical inactivity among neighborhood types 
is a little-studied area.

We used risk assessment to explore urban-
scale spatial patterns in exposures associated 
with the built environment. We investigated 
differences in urban form that have been asso-
ciated with physical inactivity and air pol-
lution [specifically, particulate matter with 
aerodynamic diameter ≤ 2.5 μm (PM2.5), 
nitrogen oxides (NOx), and ozone (O3)] to 
assess relationships between urban form and 
public health.

Methods
Our approach combined four primary sources 
of information: a geocoded, self-report travel 
diary to indicate home location and physical 
activity levels for a specific cohort (n = 30,007); 
modeled and measured estimates of outdoor 
air pollution concentrations and their 
variability in space and time; literature-derived 
estimates relating ischemic heart disease (IHD) 
rates with physical inactivity and exposure 
to air pollution; and geographic information 
system (GIS) land use variables related to 
walkability. Our method is descriptive (i.e., 
cross-sectional) and aims to explore long-term 
health effects of neighborhood characteristics 
and location. Figure 1 illustrates our risk 
assessment approach.

Physical inactivity and air pollution 
exposures. We used the year 2001 Post-
Census Regional Travel Survey to estimate 
exposure to physical inactivity and home-
based exposure to outdoor air pollution. This 
survey, which covers southern California 
communities such as Orange County and Los 
Angeles, included a geocoded time–activity 
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Background: Physical inactivity and exposure to air pollution are important risk factors for death 
and disease globally. The built environment may influence exposures to these risk factors in differ-
ent ways and thus differentially affect the health of urban populations.

Objective: We investigated the built environment’s association with air pollution and physical 
inactivity, and estimated attributable health risks.

Methods: We used a regional travel survey to estimate within-urban variability in physical inactiv-
ity and home-based air pollution exposure [particulate matter with aerodynamic diameter ≤ 2.5 μm 
(PM2.5), nitrogen oxides (NOx), and ozone (O3)] for 30,007 individuals in southern California. 
We then estimated the resulting risk for ischemic heart disease (IHD) using literature-derived 
dose–response values. Using a cross-sectional approach, we compared estimated IHD mortality 
risks among neighborhoods based on “walkability” scores.

Results: The proportion of physically active individuals was higher in high- versus low-walkability 
neighborhoods (24.9% vs. 12.5%); however, only a small proportion of the population was 
physically active, and between-neighborhood variability in estimated IHD mortality attributable to 
physical inactivity was modest (7 fewer IHD deaths/100,000/year in high- vs. low-walkability 
neighborhoods). Between-neighborhood differences in estimated IHD mortality from air pollu-
tion were comparable in magnitude (9 more IHD deaths/100,000/year for PM2.5 and 3 fewer 
IHD deaths for O3 in high- vs. low-walkability neighborhoods), suggesting that population health 
benefits from increased physical activity in high-walkability neighborhoods may be offset by adverse 
effects of air pollution exposure.

Policy implications: Currently, planning efforts mainly focus on increasing physical activity 
through neighborhood design. Our results suggest that differences in population health impacts 
among neighborhoods are similar in magnitude for air pollution and physical activity. Thus, 
physical activity and exposure to air pollution are critical aspects of planning for cleaner, health-
promoting cities.
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diary that captured self-reported activities 
and travel during fall 2001 and spring 2002. 
The survey population consisted of a random 
sample of residents, recruited by telephone in 
six southern California counties [Imperial, Los 
Angeles, Orange, Riverside, San Bernardino, 
and Ventura; for survey details, see Southern 
California Association of Governments 
(SCAG 2003)]. To our knowledge, no other 
metropolitan-scale travel survey has been used 
to estimate physical activity and exposure 
to air pollution (Marshall et  al. 2006); in 
addition, this survey represents one of the 
largest exposure-relevant surveys available for 
any urban area in the world.

Of the 40,376 survey respondents, 30,007 
(74%) met our inclusion criteria: a) geocoded 
home location [2,346 respondents excluded 
(5.8%)], b) home location within the air pollu-
tion modeling domain—the South Coast Air 
Basin [4,491 respondents excluded (11.1%)], 
and c) complete demographic information 
[age, sex, and ethnicity; 3,532 respondents 
excluded (8.7%)]. The survey generally cov-
ered 1 weekday per participant. We multi-
plied each participant’s 1-day physical activity 
record by 7 to obtain an estimate of weekly 
minutes of physical activity. This approach 
assumed that physical activity was constant 
across all days of the week. Population-average 
levels of physical activity were similar (< 15% 
difference) between weekdays and weekends 
(11 vs. 12 min/day, respectively) based on data 
from a small number of respondents (13%, 
n = 5,104) who participated in an additional 
weekend survey supplement (see sensitivity 
analysis 1, below). The survey recorded total 
physical activity and separately disaggregated 
that total into active transport (e.g., walking, 
bicycling) versus recreational activities (e.g., 
sports, working out at a gym).

Our primary estimates for air pollution 
exposure were based on monitoring data [U.S. 
Environmental Protection Agency (EPA) 
2010] for PM2.5, NOx, and O3 in 2001. We 
interpolated concentrations [inverse-distance 
weighted average of the nearest three monitors 

(Marshall et al. 2008)] to each survey par-
ticipant’s home location. Each pollutant had 
several monitoring stations (PM2.5, 27; NOx, 
42; O3, 52), providing good spatial coverage 
for the 36,000-km2 study area. We estimated 
the annual average of daily 1-hr maximum 
concentrations for O3 and annual-average 
concentrations for PM2.5 and NOx at each 
survey participant’s residence to match the 
metrics used in the epidemiological studies 
that we used to estimate IHD risks. We used 
spatial interpolation for the base case because 
it can be used for all three pollutants and is 
easily transferable to other urban areas. 

Neighborhood walkability. We calculated 
three built environment variables to represent 
neighborhood type: a) population density, 
b) intersection density, and c) land use mix. 
Neighborhoods that were in the upper (lower) 
tertile of all three built environment variables 
were defined as high- (low-) walkability 
neighborhoods. This approach classified 
12% of the survey population as living in 
a high-walkability neighborhood and 18% 
as living in a low-walkability neighborhood. 
We used objective measurements of the 
built environment rather than geographical 
overlays to match methods commonly used 
in the urban planning literature. Although 
no standard measure of walkability exists, 
most indices include measures of density, 
connectivity, and land use mix (Ewing and 
Cervero 2001). As a sensitivity analysis, 
based on prior research (Marshall et al. 2009) 
we implemented a second definition that 
classified 33% of survey participants in high- 
and 33% in low-walkability neighborhoods 
[for methods, see Supplemental Material, p. 2 
(http://dx.doi.org/10.1289/ehp.1103806)]. 
Results were similar for both definitions; 
therefore, we report results using the first 
definition only.

Population density. We used U.S. Census 
data from the year 2000 to calculate popula-
tion density at the tract level for each household 
(U.S. Census Bureau 2000). Population density 
has been shown to be a predictor of per capita 

automobile travel (Holtzclaw et  al. 2002; 
Marshall 2008) and trip length (Ewing and 
Cervero 2001), both of which are predictors of 
bicycling and walking (Handy et al. 2002).

Intersection density. Intersection den-
sity was calculated using road TIGER/Line 
data (U.S. Census Bureau 2000). A 1-km 
non-freeway network buffer was generated for 
each household using ArcGIS (version: 9.3.1, 
ESRI; Redlands, CA, USA). Intersections 
(more than two road segments) were summed 
within the buffer, yielding a measure of street 
connectivity. Previous studies show that street 
connectivity may reduce vehicle travel and 
increase walking (Ewing and Cervero 2001; 
Forsyth et al. 2008).

Land use mix. Following Frank et  al. 
(2004), we calculated a land use mix index for 
each household location. Aerial land use data 
was obtained from SCAG for the year 2001 
(SCAG 2010). The index [see Supplemental 
Material, pp. 2–3 (http://dx.doi.org/10.1289/
ehp.1103806)] is a normalized ratio of the 
mix of four primary land uses (residential, 
commercial, retail, and institutional) to total 
land area within the 1-km network buffer. 
The index ranges from 0 to 1: A value of 1 
represents an equal mixture of the four land 
uses; a value of 0 indicates 100% of land is a 
single land use. Impacts of land use mix on 
health include reducing obesity (Frank et al. 
2005) and increasing physical activity (Saelens 
et al. 2003b).

Dose–response and relative risk estimates. 
For each survey participant (i.e., at the 
individual level), we estimated relative risks 
(RRs) attributable to outdoor air pollution and 
physical inactivity for one important health 
outcome: IHD. IHD is consistently associated 
with outdoor air pollution and physical 
inactivity (WHO 2009), is responsible for 
a large proportion of deaths in the United 
States (~ 18% of all deaths and 67% of heart 
disease deaths in 2006) [Centers for Disease 
Control and Prevention (CDC) 2009], 
and has been shown to be an important 
health outcome for both risk factors when 
considering large-scale shifts to active travel 
(Woodcock et al. 2009). Because our exposure 
estimates for air pollution are continuous, we 
estimated an RR for each survey participant 
based on a linear dose–response [see 
Supplemental Material, Figure S2 (http://
dx.doi.org/10.1289/ehp.1103806)] for the 
range of observed air pollutant concentrations 
and the referent exposure levels described 
below. In contrast, WHO (2004) suggests a 
three-tier dose–response for physical activity: 
a) active (exercise for >  150  min/week; 
RR = 1), b) insufficiently active (exercise for 
1–150 min/week; RR = 1.31), and c) inactive 
(0 min exercise per week; RR = 1.47), allowing 
for only three possible physical activity RRs 
for each survey participant. We estimated 

Figure 1. Conceptual framework for this risk assessment. Ovals are inputs, and boxes are midpoint calcu-
lations. Shaded boxes indicate estimated risk separated into two groups for comparison.
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attributable fractions for outdoor air pollution 
and physical inactivity using the mean 
individual RR in high- or low-walkability 
neighborhoods.

Air pollution dose–response relationships 
were identified and selected as follows. We 
manually searched the tables of contents of 
four journals (Journal of the American Medical 
Association, New England Journal of Medicine, 
British Medical Journal, Lancet) for the years 
2000–2010 for air pollution risk estimates. 
We also performed a search of key words in 
Google Scholar and ISI Knowledge, includ-
ing (in various combinations) “air pollution,” 
“O3/NOx/PM2.5,” “ischemic heart disease,” 
“cardiovascular disease,” “cardiopulmonary dis-
ease,” “respiratory disease,” “mortality,” “health 
effects,” “chronic/acute,” and “dose–response.” 
We used the “cited by” function in Google 
Scholar to explore subsequent studies related 
to each article. Through this process, we identi-
fied 62 articles. We then selected studies that 
focused on within-city variation and included 
IHD as a health outcome (Table 1).

Each RR for air pollution was estimated 
from cohort studies of long-term exposures; 
however, these estimates differed in important 
ways. For example, Nafstad et al. (2004) stud-
ied men 40–49 years of age, meaning our NOx 
results cannot be generalized to other popula-
tions [RR = 1.08; 95% confidence interval 
(CI): 1.06, 1.11]. Jerrett et al. (2005) used a 
subset of the American Cancer Society (ACS) 
cohort (Los Angeles, CA, USA) to estimate a 
within-city RR of 1.25 per 10 μg/m3 increase 
in PM2.5 (95% CI: 0.99, 1.59). Jerrett et al. 
(2005) did not report a significant RR for 
PM2.5 in Los Angeles, but the RR estimate is 
roughly consistent with two between-city stud-
ies that did report statistically significant RRs: 
Pope et al. (2004; RR = 1.18 per 10 μg/m3 
increase in PM2.5; 95% CI: 1.14, 1.23) and 
Jerrett et  al. (2009; RR = 1.21; 95% CI: 
1.16, 1.27). The Jerrett et al. (2009) RR for 
a 10 μg/m3 increase in O3 (1.008; 95% CI: 
1.002, 1.013) was based on between-city varia-
tion (ACS cohort) in 96 U.S. metropolitan 
statistical areas generated from a one-pollut-
ant model. However, it is important to note 
that Jerrett et al. (2009) reported a protective 
effect for O3 based on a two-pollutant model 
adjusted for PM2.5 (RR = 0.97; 95% CI: 0.96, 
0.99), and overall there is less evidence in the 
literature for O3 associations with IHD com-
pared with those for PM2.5. A within-city study 
of O3 and IHD was not available.

The referent exposure levels used to esti-
mate individuals’ RRs were “active” for physi-
cal inactivity (> 150 min of moderate-vigorous 
activity per week), and the 10th percentile of 
exposure (survey population based; values: 
13.6 μg/m3 for PM2.5, 39.8 μg/m3 for NOx, 
80.3 μg/80.3 μg/m3 for O3) for air pollution, 
consistent with exposures in a relatively clean 

neighborhood in the study area. Each survey 
participant’s air pollution RR was estimated 
based on the difference between their home-
location air pollution exposure and the referent 
exposure level. For example, for PM2.5, an indi-
vidual whose home-location exposure estimate 
was 23.6 μg/m3 (10 μg/m3 above the referent 
level) would be assigned an RR of 1.25.

Population-attributable  fraction. We 
calculated population-attributable  fraction 
(PAF) and estimated attributable IHD mor-
tality rates for each risk factor in high- and 
low-walkability neighborhoods. PAF for a 
neighborhood was calculated based on 
the proportion of individuals exposed to 
each risk factor and average RR among all 
individuals in a neighborhood (Baker and 
Nieuwenhuijsen 2008):
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Here, RR is the mean individual RR in each 
group (high- and low-walkability neighbor-
hoods) and risk factor, and p is the proportion 
of individuals exposed in each group (defined 
by our referent exposure levels). We used the 
2000–2001 age-adjusted IHD mortality rate 
in California (191.2 IHD deaths/100,000/
year; CDC 2011) to estimate deaths within 
each group and subsequent attributable IHD 
mortality rates (except for NOx where we used 
the IHD mortality rate for men in California 
45–54 years of age: 81.9 IHD deaths/100,000/
year). Attributable mortality due to physical 
inactivity, PM2.5, NOx, and O3 cannot be 
summed because of confounding among the 
risk factors and overlap of at-risk populations. 
Therefore, we report attributable mortality due 
to the different factors separately.

We separately calculated PAF using a 
method with multiple exposure levels instead 
of the dichotomous exposure levels implicit in 
Equation 1, as described in the Supplemental 
Material [pp. 5–6 (http://dx.doi.org/10.1289/
ehp.1103806)] Results based on this alternative 
method were similar to those reported below.

Sensitivity analyses. To explore the robust-
ness of our estimates, we used three sensitivity 
analyses to assess a) different methods of scal-
ing minutes of physical activity, b) alternate 

modeling approaches for air pollution, and 
c)  stepwise versus linear dose–response for 
physical activity.

Sensitivity analysis 1: scaling method for 
minutes of physical activity. Our approach 
requires extrapolating weekly exercise rates 
based on the 1-day travel diary because most 
physical activity epidemiological literature 
employs the metric “minutes of physical activ-
ity per week.” To test the limitations of this 
extrapolation for our analysis, we developed a 
Monte Carlo simulation that relaxes our base-
case assumption (i.e., that individuals’ physical 
activity rates are constant by day), by employ-
ing two alternative assumptions: that people 
who are nonsedentary are physically active 
a) every other day or b) every third day. The 
Monte Carlo simulation distributes total min-
utes of physical activity accordingly, stratifying 
by age, sex, and ethnicity. The resulting distri-
butions of physical activity better approximate 
national estimates on the prevalence of physi-
cal inactivity (WHO 2004).

Sensitivity analysis 2: air pollution model. 
Our base-case analysis used spatial interpola-
tion of U.S. EPA monitoring data, which are 
readily available for all three pollutants for 
many urban areas. We compared results using 
a Eulerian dispersion model [Comprehensive 
Air Quality Model with Extensions (CAMx); 
http://www.camx.com; nitrous oxide (NO), 
nitrogen dioxide (NO2), O3] and land-use 
regression (LUR; NO2; Novotny et al. 2011). 
CAMx and LUR provide greater spatial preci-
sion than inverse-distance weighting but may 
or may not be available in other urban areas.

Sensitivity analysis 3: physical activity 
dose–response. We tested the sensitivity of 
our results to the dose–response curve for 
physical inactivity. Our base case used the 
stepwise dose–response from WHO (2004) 
(Table 1). For this sensitivity analysis, we gen-
erated three linear dose–response curves (low, 
medium, and high slopes) based on the same 
WHO values.

Results
Annual-average air pollution exposure 
for  the  survey  populat ion averaged 
49  μg/m3 for NO2 [interquartile range 
(IQR), 41–60  μg/m3), 99  μg/m3 for O3 

Table 1. Summary of RR estimates used for IHD.

Study Risk factor Study details RR (95% CI)
Nafstad et al. 2004 NOx Within-city; men 40–49 years of age 

in Oslo, Norway (n = 16,209)
1.08a (1.06, 1.11) per 10 μg/m3

Jerrett et al. 2005 PM2.5 Within-city; subset (Los Angeles, CA) 
of the ACS cohort (n = 22,905)

1.25a (0.99, 1.59) per 10 μg/m3

Jerrett et al. 2009 O3 Between-cities; ACS cohort 
(n = 448,850)

1.008a (1.002, 1.013) per 10 μg/m3

WHO 2004 Physical 
inactivity

Meta-analysis of 20 studies from two 
continents (Western Europe, 8; North 
America, 12; total n = 327,004 )

Insufficiently active:b 1.31 (1.21, 1.41) 
Inactive:b 1.47 (1.39, 1.56)

aAir pollution risk estimates used here were based on long-term cohort studies and chronic health effects. bReferent, 
> 150 min/week; insufficiently active, 1–150 min/week; inactive, 0 min/week.
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(86–112  μg/m3; annual  average of 1-hr 
daily maximums), and 22 μg/m3 for PM2.5 
(20–24 μg/m3; Table 2). Mean NO2 exposures 
were below current ambient-air standards 
[U.S. EPA and California Environmental 

Protection Agency (CalEPA) standards, 
respectively: 100 and 57  μg/m3]. PM2.5 
exposures were approximately 1.5 and 2 times 
higher than U.S. EPA (15 μg/m3) and CalEPA 
(12  μg/m3) long-term standards (annual 

arithmetic mean), respectively (California Air 
Resources Board 2010).

Self-reported physical activity levels aver-
aged 77 min/week (IQR, 0–0 min/week; i.e., 
the 25th and 75th values are 0 min/week; 
Table 2). Most (83.5%) of the survey partici-
pants reported being inactive (0 min/week), 
5.6% reported being insufficiently active 
(1–150 min/week), and 10.9% reported being 
active (> 150 min/week; physical activity rec-
ommendations; U.S. Department of Health 
and Human Services 1996). Activity levels 
were notably lower than national averages 
(U.S. averages: inactive, 29%; insufficiently 
active, 45%; active, 26%; WHO 2004). 
Sensitivity analysis 1 addresses this difference 
in activity levels.

NOx and PM2.5 concentrations were high-
est near the city center and major roadways, 
whereas O3 concentrations were higher in the 
outer-lying areas (Figure 2). Because of this 
spatial pattern, few locations experienced low 
exposure to all three pollutants. Spatial pat-
terns for physical activity were dependent on 
the purpose of the activity; there was no dis-
cernable spatial pattern for recreational activi-
ties, but active transport was clustered near 
high-walkability neighborhoods (Figure 2).

Average per capita physical activity was 
50% higher in high- than in low-walkability 
neighborhoods (102 vs. 68  min/week; 
Figure  3). The number of nonsedentary 
individuals (people with >  0  min/week 
physical activity) was two times higher in high- 
versus low-walkability neighborhoods (24.9% 
and 12.5%, respectively; p < 0.001). However, 
considering nonsedentary individuals only, 
average physical activity was 24% lower in 
high- than in low-walkability neighborhoods 
(410 vs. 543 min/week). This finding suggests 
that neighborhood type may have differing 
impacts on the number of people participating 
in physical activities, average physical activity 
among all individuals, and average physical 
activity among nonsedentary individuals.

The self-reported purpose of physical 
activity differs by neighborhood (Figure 3). 
For example, active transport accounts for 
about half of physical activity in the high-
walkability neighborhoods but only 20% 
in low-walkability neighborhoods. Active 
transport is 3.6 times higher in high- versus 
low-walkability neighborhoods (a finding 
that partially corroborates our GIS estimates 
of walkability), whereas nontravel activity is 
similar (< 10% difference) in low- versus high-
walkability neighborhoods. Activity level and 
purpose exhibited greater weekend/weekday 
differences in low-walkability areas than 
in high-walkability areas [see Supplemental 
Material, Table S2, Figure S4 (http://dx.doi.
org/10.1289/ehp.1103806)].

Figure 4 shows estimated attributable IHD 
mortality rates for each neighborhood type 

Figure 2. Spatial variation of air pollution exposure and physical inactivity. Physical activity estimates were 
derived from time–activity diaries, air pollution exposures were calculated from U.S. EPA monitoring data, 
and walkability was defined using publicly available land use variables. Icons for transport and recre-
ational activities represent census tracts where > 25% of the survey respondents reported > 150 min/week 
of that activity type.
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Table 2. Descriptive statistics by neighborhood type [mean (IQR)].

Variable
All 

(n = 30,007)
Low walkability 

(n = 5,366)
High walkability 

 (n = 3,549)
Age (years) 38 (21–54) 41 (23–58) 34 (20–47)
Nonwhite (%) 40 23 65
Male (%) 50 49 50
Income > $50,000 per year (%) 48 57 31
College or more (%) 46 52 40
NOx (μg/m3)a 85 (68–103) 67 (50–88) 106 (89–130)
O3 (μg/m3)b 99 (86–112) 111 (97–124) 86 (82–92)
PM2.5 (μg/m3)a 22 (20–24) 20 (14–25) 23 (22–24)
Physical activity (min/week) 77 (0–0) 68 (0–0) 102 (0–0)
Population density in Census tract 

(people/km2)c
22,400 (7,800–28,400) 3,100 (600–5,200) 53,500 (31,900–61,600)

Intersection density (1-km network buffer)c 57 (27–82) 11 (2–20) 109 (86–114)
Land use mix (1-km network buffer)c 0.37 (0.25–0.49) 0.13 (0–0.23) 0.59 (0.50–0.66)

All continuous variables in high-walkability neighborhoods have statistically significant differences (for all variables 
p < 0.001) compared with low-walkability neighborhoods (two-tailed t-test).
aHome-location annual-average concentrations. bHome-location annual average of daily 1-hr maximum concentrations. 
cThis land use variable was used to define walkability.
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and risk factor. Physical inactivity was more 
strongly associated with IHD mortality (51 
additional deaths/100,000/year overall) than 
were the other exposures, but IHD mortality 
attributable  to physical inactivity was only 
slightly different between high- and low-
walkability neighborhoods (7 fewer IHD 
deaths/100,000/year in high- vs. low-walk-
ability). Conversely, overall estimated attrib-
utable  IHD mortality due to exposure to 
PM2.5 was smaller (30 deaths/100,000/year), 
but the difference between neighborhoods was 
slightly larger than for physical inactivity (9 
more IHD deaths/100,000/year in high- vs. 
low-walkability). O3 shows the reverse spatial 
pattern as PM2.5 (i.e., O3 exposure is higher 
in low-walkability neighborhoods, whereas 
PM2.5 is lower) but a smaller difference in 
mortality between neighborhoods (3  fewer 
IHD deaths/100,000/year in high- vs. low-
walkability). Attributable  IHD mortality 
rates for NOx (represented by risk estimates 
for men 40–49 years of age; not shown in 
Figure 4) were 13 (28) IHD deaths/100,000/
year for low- (high-) walkability neighbor-
hoods. Attributable risk estimates for physi-
cal inactivity, PM2.5, and O3 showed similar 
patterns when neighborhoods were classified 
according to deciles of walkability scores 
[Supplemental Material, Figure S5 (http://
dx.doi.org/10.1289/ehp.1103806)].

Sensitivity analysis 1: scaling method 
for minutes of physical activity. Results [see 
Supplemental Material, pp. 8–9 (http://dx.doi.
org/10.1289/ehp.1103806)] indicate that our 
alternative assumptions reduce the variabil-
ity in physical activity among neighborhoods. 
Specifically, the Monte Carlo simulation 
increases the share of nonsedentary individu-
als (subsequently reducing average risks from 
physical inactivity) but also yields reductions 
in estimated IHD mortality differences among 
neighborhoods. Our core conclusions are simi-
lar among the Monte Carlo simulations.

Sensitivity analysis 2: air pollution model. 
Central tendencies varied by pollutant and 
model; however, trends in the core conclusions 

(i.e., shifts in exposure and risk by neighbor-
hood type) were similar where it was possible to 
compare [see Supplemental Material, pp. 9–10 
(http://dx.doi.org/10.1289/ehp.1103806)]. In 
general, differences in estimated IHD mortal-
ity rates between high- and low-walkability 
neighborhoods were larger when using the 
alternate models; therefore, base-case results 
reported above may be conservative estimates 
(i.e., underestimates) of air pollution spatial 
variability.

Sensitivity analysis 3: physical activity dose–
response. Our results did not change apprecia-
bly when using the linear dose–response curves 
[see Supplemental Material, pp. 10–11 (http://
dx.doi.org/10.1289/ehp.1103806)].

We also estimated RRs according to 
neighborhood type (high- or low-walkability) 
within strata of age (0–25 years, 26–50 years, 
> 50 years) and according to income and eth-
nicity [high income (> $75,000) and white 
vs. low income (< $35,000) and nonwhite]. 
The results reveal similar trends in risk dif-
ferences between neighborhoods for each 
strata, suggesting that our results are robust to 
accounting for differences in income, ethnic-
ity, and age. Details are in the Supplemental 
Material [pp. 11–14, Table S6 (http://dx.doi.
org/10.1289/ehp.1103806)]. Prior literature 
further explores socioeconomic aspects of this 
topic (e.g., Ewing 2005; Frank et al. 2007; 
Sallis et al. 2009).

Discussion
Our analysis summarizes between-neighbor-
hood variations in two risk factors (exposure 
to air pollution, physical inactivity) using a 
time–activity travel diary for one region. We 
found risks were differential when stratified by 
neighborhood walkability. Specifically, when 
comparing estimated IHD mortality rates 
among neighborhoods, differences attribut-
able to physical inactivity were modest and 
comparable to differences attributable to indi-
vidual air pollutants. Because of spatial patterns 
associated with each pollutant, urban residents 
were often highly exposed to at least one but 

not all pollutants (e.g., high exposure to O3 in 
low-walkability neighborhoods or high expo-
sure to PM2.5 in high-walkability neighbor-
hoods). This trade-off suggests that the net 
health impact of neighborhoods may depend 
in part on spatial patterns of air pollution.

Recent health comparisons between air pol-
lution and exercise (Carlisle and Sharp 2001; 
de Hartog et al. 2010) emphasize the greater 
health importance of exercise relative to air 
pollution. This prior research considered only 
people who exercise (Carlisle and Sharp 2001; 
de Hartog et al. 2010); here, we consider the 
entire population—nonsedentary plus seden-
tary individuals. Only a subset of a given popu-
lation is physically active, and only a subset of 
that physical activity is influenced by neighbor-
hood design; here, the net result is that spatial 
differences in attributable IHD mortality risks 
are of similar magnitude for physical inactiv-
ity as for air pollution. Our results indicate a 
doubling in the share of nonsedentary people 
in high- versus low-walkability neighborhoods 
(24.9% vs. 12.5%); however, all individuals—
inactive and active—experience changes in air 
pollution exposures. For this study population, 
physical activity rates were higher (and exer-
cise-attributable IHD mortality rates lower) in 
high- than in low-walkability neighborhoods. 
However, because variations in air pollution 
risk are similar to variations in physical inactiv-
ity risks, when comparing high- versus low-
walkability neighborhoods, health benefits 
from increased physical activity may be offset 
by health risks from air pollution exposure.

Our study uses self-reported rather than 
objectively measured physical activity. Previous 
studies that have used objectively-measured 
physical activity to investigate effects of urban 
form on physical activity (Table  3) have 
reported mixed results: two studies reported 

Figure 3. Differences among neighborhoods. (A) Average active transport (minutes walking and bicycling 
per person) and recreational activities. (B) Physical activity levels. The between-neighborhood difference 
in total physical activity is statistically significant (p < 0.001, two-tailed t-test).
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differences in physical activity by neighbor-
hood type (Frank et  al. 2005; Sallis et  al. 
2009), and one indicated shifts in the purpose 
(transport vs. fitness) but not the amount of 
physical activity (Forsyth et al. 2008). These 
findings suggest that urban-scale differences 
in physical activity rates are similar between 
objectively measured physical activity and our 
self-reported measures of activity. For exam-
ple, differences in per capita physical activity 
between high- and low-walkability neighbor-
hoods in Seattle, Washington, and Baltimore, 
Maryland, were similar to differences in our 
southern California population [41 min/week 
(Seattle, Baltimore) versus 34 min/week (south-
ern California) (Sallis et al. 2009)].

Our study limitations include those 
associated with travel surveys and self-
reported information in general. For example, 
travel surveys typically undercount trips by 
all modes (Bricka and Bhat 2006), affecting 
estimates of travel time (Wolf et al. 2003). 
The SCAG survey suggests that vehicle 
undercount rates may approach 20–25% 
but gives little information regarding non
motorized trips (SCAG 2004). Undercount 
rates may be differential by trip length (SCAG 
2004), mode, or neighborhood. Comparisons 
with studies using objectively measured 
physical activity (see preceding paragraph) 
suggest that our core findings are robust to 
trip undercounting and other problems with 
self-reported travel data.

Our work is motivated by the goal of 
understanding and designing clean, healthy, 
sustainable cities (Giles et  al. 2011). Our 
investigation explores only one location (Los 
Angeles), one health outcome (IHD), one 
cohort, a small number of pollutants (NOx, 
PM2.5, O3), and physical inactivity. Clearly, 
further analyses incorporating other risk fac-
tors (e.g., noise, transport injury) linked to the 
built environment are warranted. Interaction 
between physical activity and air pollution 
may vary on an even smaller scale than we 
have investigated in the present study (i.e., 
within neighborhoods). Future analyses could 
use age-specific risks of IHD mortality for air 

pollution and physical inactivity. Our analysis 
is descriptive (i.e., cross-sectional) in nature; 
more research is needed to explore causality 
between urban form and health risks (espe-
cially for physical activity, because ambient air 
pollution exposure is largely determined by 
geographical location).

Despite these limitations, our results are 
relevant to health officials, sustainability scien-
tists, and urban planners. To our knowledge, 
ours is the first analysis that directly compares 
health risks for both air pollution and physi-
cal inactivity among neighborhoods based 
on activity patterns for a random sample of 
residents in an urban area, and thus is the first 
to quantify relationships between urban form 
and the health impacts of physical activity and 
air pollution. We found that attributes of the 
built environment were associated with both 
air pollution exposure and physical inactivity. 
These results emphasize that to be health pro-
tective, neighborhoods designed to decrease 
risks from one factor must avoid unintention-
ally increasing risks from other factors.

Conclusion
We compared the health impacts attribut-
able  to air pollution and physical inactiv-
ity among neighborhoods for one cohort 
(~ 30,000 individuals in Southern California). 
A larger proportion of our Southern California 
study population was classified as nonsedentary 
in high- versus low-walkability neighborhoods 
(25% vs. 13%). However, because only a small 
share of the total population was classified as 
physically active, we estimated only moderate 
differences in IHD mortality rates attribut-
able to physical inactivity between neighbor-
hood types. Spatial patterns of estimated 
attributable IHD mortality rates varied by pol-
lutant: estimated mortality due to increased 
PM2.5 and NOx were greater in high- than in 
low-walkability neighborhoods, whereas esti-
mated IHD mortality due to increased O3 was 
greater in low- than in high-walkability neigh-
borhoods. In general, differences in estimated 
IHD mortality between neighborhoods were 
comparable for exposure to air pollutants and 

physical inactivity. Our results suggest com-
plex within-urban spatial trade-offs in health 
risks associated with air pollution and physi-
cal inactivity. Efforts to design healthy neigh-
borhoods should account for many factors, 
including air pollution and physical inactivity, 
and not address one concern at the expense of 
others.
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